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THE EFFECT OF THE WALLS OF AN ARBITRARY TANK

IN THE PROBLEM OF SEPARATION-FREE IMPACT ON A FLOATING BODY

UDC 532.582.33M. V. Norkin

An algorithm for constructing an asymptotic power series for large depths is proposed. It allows
one to use the well-known solution of the problem of impact on a rigid body floating on the
surface of a fluid half-space to obtain an approximate solution of the impact problem for the
same body floating on the surface of a fluid in a bounded basin. The case where the domain
occupied by the fluid has two perpendicular planes of symmetry is considered. Asymptotic
expressions are given for the velocity potential on the wetted part of the body surface and for
the added mass. Examples of solutions are considered.

In a previous paper [1], we proposed an algorithm for constructing an asymptotic power series for large
depths that allows one to use the well-known solution of the problem of impact on a rigid body immersed in
a fluid half-space to obtain an approximate solution of the impact problem for the same body immersed in a
fluid layer of finite depth. In the present paper, this algorithm is extended to the case of an arbitrary bounded
basin. The results obtained are also valid for certain unbounded domains (layer, semiinfinite cylinder, etc.).

The proposed asymptotic approach is based on Stokes’s classical method of successive approxima-
tions.the same time, in computational mathematics there is Schwarz’s method. In both methods, solution
of the original problem for a geometrically complex domain reduces to successive solution of problems for
domains having a simpler boundary.

In the present paper, we describe an algorithm for constructing an asymptotic series for the case of
central impact on a floating body.

1. Formulation of the Problem. We consider a rigid body floating on the surface of an ideal
incompressible fluid occupying a bounded basin of arbitrary shape. Before impact, the body and the fluid
were at rest. As a result of impact, the body begins to move in the vertical direction without rotation (central
impact). We assume that the shape of the body is such that there is no separation of the fluid from the
wetted body surface (separation-free impact). For a separation-free impact, it suffices to require that the
normal components of the velocities of points on the body surface be nonnegative everywhere on the wetted
body surface. The boundary of the domain occupied by the fluid is considered piecewise-smooth.

The potential of the velocities acquired by the fluid particles as a result of the impact is denoted
by V0Φ, where the dimensionless potential Φ is determined by solving the following mixed problem of the
potential theory for the domain occupied by the fluid [2, 3]:

∆Φ = 0,
∂Φ
∂n

∣∣∣
S1

= nz, Φ
∣∣∣
S2

= 0,
∂Φ
∂n

∣∣∣
S3

= 0.

Here S1, S2, and S3 are the wetted surface of the rigid body, the free surface of the fluid, and the fixed
rigid wall of the basin, respectively, V0 is the velocity acquired by the body upon the impact, and nz is the
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projection of the outward normal to the surface S1 onto the axis z. Cartesian coordinates x, y, and z are
introduced so that the x and y axes lie in the plane of the free surface, the z axis is directed into the fluid,
and the coordinate origin coincides with a certain point of the body.

We assume that homothety with center at the origin and coefficient h maps the fixed surface S0
3 onto

the boundary S3: S3 = hS0
3 (x = hx0, y = hy0, and z = hz0). The fluid density ρ is set equal to unity.

The following notation is used: G is the infinite domain bounded by the wetted body surface S1 and
the free fluid surface S2 (the case of h =∞), D is the domain bounded by the surface S3 and the plane z = 0,
D0 is the inner domain bounded by the surface S0

3 and the plane z = 0, and ∂D (∂D0) is the union of the
surface S3 (S0

3) and its mirror reflection about the plane z = 0.
2. Construction of an Asymptotic Solution for Large h. The proposed method involves

successive solution of the following two problems: the case of h =∞ (boundary-value problem in the domain
G) and the problem in a bounded basin with no body (boundary-value problem in the domain D). In both
cases, we eliminate the residuals that arise on the fixed boundary S3 and the wetted surface of the body
S1. Expanding the approximations obtained in a power series in h−1 and retaining the necessary number of
terms, we obtain an asymptotic formula for large h.

Let us discuss the problem in detail. We seek the velocity potential Φ in the form of the series
Φ = Φ1 + Φ2 + Φ3 + . . . . As the first approximation Φ1, we use the solution of the impact problem for the
body floating on the surface of a fluid half-space. At large distances from the body, the following Fourier-series
expansion of the potential Φ1 holds [3, 4]:

Φ1 = − C1z

2πR3
− C2xz + C3yz

4πR5
− C4z

3 + C5x
2z + C6y

2z + C7xyz

R7
− . . . . (2.1)

Here R =
√
x2 + y2 + z2, the constants C1, C2, . . . , C7 are expressed in terms of integrals over the wetted

surface of the body, involving the velocity potential Φ1, e.g.,

C1 =
∫ ∫
S1

z
∂Φ1

∂n
ds−

∫ ∫
S1

Φ1nz ds,
C2

6
=
∫ ∫
S1

xz
∂Φ1

∂n
ds−

∫ ∫
S1

znxΦ1 ds−
∫ ∫
S1

xnzΦ1 ds,

C3

6
=
∫ ∫
S1

yz
∂Φ1

∂n
ds−

∫ ∫
S1

znyΦ1 ds−
∫ ∫
S1

ynzΦ1 ds.

To eliminate the residuals caused by the potential Φ1 on the fixed boundary S3, we consider the
problem in a bounded basin with no body:

∆Φ2 = 0, Φ2

∣∣∣
z=0

= 0,
∂Φ2

∂n

∣∣∣
S3

=
C1

2π
Q1

∣∣∣
S3

+Q2

∣∣∣
S3

,

(2.2)

Q1 =
∂

∂n

z

R3
, Q2 =

∂

∂n

C2xz + C3yz

4πR5
.

Here it suffices to consider only two terms of series (2.1). The contribution of the remaining terms to the
potential Φ on the wetted surface of the body is of the order of O(h−5) for h→∞. After odd continuation of
the function Φ2 across the plane z = 0, the solution of problem (2.2) is represented as the sum of the simple-
and double-layer potentials:

Φ2(x0, y0, z0) =
1

4π

∫ ∫
∂D

1
Rp0p

∂Φ2

∂n
ds− 1

4π

∫ ∫
∂D

Φ2
∂

∂n

1
Rp0p

ds,

(2.3)

P = (x, y, z), P0 = (x0, y0, z0), Rp0p =
√

(x− x0)2 + (y − y0)2 + (z − z0)2.

In the surface integrals in (2.3), we change the variables: x → hx, y → hy, z → hz, and ds → h2ds. As a
result, we obtain the following representation for the potential Φ2:
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Φ2(x0, y0, z0) =
1

4π

∫ ∫
∂D0

1
Rh

( C1

2πh2

∂f

∂n
+

1
h3

∂g

∂n

)
ds− 1

4π

∫ ∫
∂D0

( C1f

2πh2
+

g

h3

) ∂
∂n

1
Rh

ds,

Rh =
√

(x0/h− x)2 + (y0/h− y)2 + (z0/h− z)2.

Here the functions f and g are defined as the solutions of the following boundary-value problems in the
domain D0:

∆f = 0, f
∣∣∣
z=0

= 0,
∂f

∂n

∣∣∣
S0

3

= Q1

∣∣∣
S0

3

, ∆g = 0, g
∣∣∣
z=0

= 0,
∂g

∂n

∣∣∣
S0

3

= Q2

∣∣∣
S0

3

. (2.4)

Expanding Φ2 as a function of the parameter ε = 1/h in a Taylor series about the point ε = 0 (h =∞),
we obtain the asymptotic formula

Φ2(x0, y0, z0) = −C1ξ

2π
z0h
−3 − (ξ1z0x0 + ξ2z0y0 + ξ3z0)h−4 +O(h−5)

(2.5)(
ξ =

1
2π

∫ ∫
S0

3

(
f
∂f1

∂n
− f1

∂f

∂n

)
ds, f1 =

z

R3
, ξ1, ξ2, ξ3 = const

)
,

which are valid in any fixed (independent of h) neighborhood of the wetted surface of the body (h→∞).
To compensate for the normal components of the potential Φ2 that arose on the wetted surface of the

body, we consider the case of h =∞ again. Ignoring the remainder term in Eq. (2.5), we obtain the following
boundary-value problem in the domain G for Φ3:

∆Φ3 = 0, Φ3

∣∣∣
S2

= 0, Φ3

∣∣∣
∞

= 0,

∂Φ3

∂n

∣∣∣
S1

=
C1ξ

2π
nzh

−3 + [z(ξ1nx + ξ2ny) + (ξ1x+ ξ2y + ξ3)nz]h−4.

According to the last boundary condition, the function Φ3 is represented as the sum of two terms, one
of which differs from Φ1 by a constant factor: Φ3 = (C1ξ/(2π))h−3Φ1 + h−4Φ∗.

Collecting the approximations constructed, we obtain the following asymptotic formula for the potential
Φ on the wetted body surface:

Φ = Φ1 +
C1ξ

2π
h−3(Φ1 − z0) +O(h−4) (h→∞). (2.6)

If the potential Φ2 is determined taking into account not only the first two terms of series (2.1) but
also the other terms, the process of successive approximations can be continued by successively considering
the problem in a bounded basin with no body and the case of h =∞ (at next step, the residuals caused by
the potential Φ3 on the fixed boundary S3 are eliminated, and the procedure is then repeated). However,
the next approximations add only terms of the order of O(h−6) to the asymptotic formula of the potential
Φ (2.6) for h→∞. Hence, the first two terms of the harmonic series (2.1) allow us to write the asymptotic
formula for the potential Φ on the wetted surface of the body up to terms of the order of O(h−5) for h→∞.
We do not give the expression for the third term in the asymptotic formula (2.6) because of its awkwardness.

The constant ξ can be written in a simpler form. Applying Green’s formula to the functions f and f1

in the domain obtained from the domain D0 by elimination of a hemisphere Sε of small radius ε with center
at the coordinate origin, we obtain

ξ =
1

2π

∫ ∫
Sε

(
f
∂f1

∂n
− f1

∂f

∂n

)
ds. (2.7)
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On the hemisphere Sε, we have f1 = z/ε3 and ∂f1/∂n = −2z/ε4. Converting now to spherical
coordinates in (2.7) and letting the parameter ε tend to zero, we obtain

ξ = −∂f
∂z

∣∣∣
M0

, M0 = (0, 0, 0). (2.8)

Thus, to find the constant ξ, we need to solve the boundary-value problem (2.4) and then to calculate
the derivative (2.8). The constant ξ is independent of the geometry of the floating body and depends only
on the shape of the boundary S3.

We note that if the surface S0
3 (or S3) has two perpendicular symmetry planes xz and yz, the remainder

term in Eq. (2.6) is of the order of O(h−5) for h→∞. This can be explained by the fact that the coefficients
ξ1, ξ2, and ξ3 at h−4, are expressed in terms of integrals of odd (in x or y) functions over S0

3 . In a particular
case where S0

3 is a surface of revolution, it is convenient to introduce a stream function ψ related to f by the
formulas

∂f

∂r
=

1
r

∂ψ

∂z
,

∂f

∂z
= −1

r

∂ψ

∂r
, (2.9)

where the function ψ is defined as the solution of the following boundary-value problem in the domain D0

[ψ(0) = 0]:

∂2ψ

∂z2
+
∂2ψ

∂r2
− 1
r

∂ψ

∂r
= 0,

∂ψ

∂z

∣∣∣
z=0

= 0, ψ
∣∣∣
S0

3

=
r2

(r2 + z2)3/2
, r2 = x2 + y2.

Using formula (2.6), one can easily find asymptotic expressions for the total impact momentum and
its moment about the origin exerted on the body during the impact (h→∞):

B = B∞ +
C1ξ

2πh3
(B∞ − V0L1) +O(h−4), M = M∞ +

C1ξ

2πh3
(M∞ − V0L2) +O(h−4),

L1 = (0, 0, V ), L2 = (L21, L22, 0), L21 =
∫
V

y dV, L22 = −
∫
V

x dV.

Here B∞ and M∞ are the momentum and the moment of momentum for h =∞, respectively, and V is the
volume of the submerged part of the body.

We now assume that the domain occupied by the fluid has two perpendicular symmetry planes xz and
yz. In this case, the equations for variations of the momentum and the moment of momentum due to central
impact yield the relations

(mb +m)V0 = Pz, Px = 0, Py = 0, x0 =
mbp0

mb +m
, y0 =

mbq0

mb +m
,

where mb is the mass of the body, m is the added mass, p0 and q0 the abscissa and ordinate of the center of
mass of the body, Px, Py, and Pz are the components of the external impact momentum applied to the point
with the coordinates x0, y0, and z0.

Hence, in the case of the indicated symmetry, the body must be impacted by a vertical force applied
at the point with the abscissa x0 and the ordinate y0.

The asymptotic expressions for the potential Φ at the wetted body surface and for the added mass m
take the form

Φ = Φ1 +
(m∞ + V )ξ

2πh3
(Φ1 − z0) +O(h−5) (h→∞),

(2.10)

m = m∞ +
(m∞ + V )2ξ

2πh3
+O(h−5) (h→∞).

Here m∞ is the added mass for h =∞.
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3. Applications. We present the values of the constant ξ for a number of particular domains:
— for a fluid layer of finite depth, ξ = 3ζ(3)/(8a3) [ζ(x) is the Riemann zeta function];
— for a semiinfinite cylinder,

ξ =
2
πa3

∞∫
0

λ2K1(λ)
I1(λ)

dλ

[I1(λ) and K1(λ) are modified Bessel functions of the first and the third kind];
— for a hemisphere, ξ = 2/a3;
— for half-space with a circular outer barrier, ξ = 2/(3πa3).

Here a is the characteristic size of the domain D0, which is the depth of the layer in the first example, the
radius of the cylinder in the second example, and the radius of the hemisphere in the third example. In the
last example, the surface S0

3 is the exterior of a circle of radius a in the plane z = 0. In the first two examples,
substitution of the constant ξ into Eq. (2.10) yields results coinciding with the results of [1].

Conclusions. In this paper, we derive simple asymptotic formulas that allow one to take into account
the effect of the walls of an arbitrary basin in the problem of central impact on a floating body in the case
of moderate depths.

By analogy, one can solve the problem of a vertical separation-free impact on a floating body in the
case where the body starts to move in the vertical direction and rotate about the horizontal axis. If the
domain occupied by the fluid has two perpendicular symmetry planes xz and yz, the second terms of the
asymptotic potentials for rotations about the x and y axes are of the order of O(h−5) for h→∞.

The methods for constructing asymptotics proposed in this paper can be generalized to the case where
two arbitrary bodies interact with each other on the surface of a fluid half-space.
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